Telegram Group & Telegram Channel
Как обеспечить последовательность очистки данных для временных рядов в обучающем и тестовом наборах данных с учётом разных временных окон

Для временных рядов тестовый набор обычно относится к более позднему временному окну, чем обучающий. Если распределение временного ряда изменяется, важно, чтобы шаги очистки (например, заполнение пропусков) и создание признаков (например, скользящие средние) не использовали данные из будущего.

Преобразования (например, скользящее среднее) следует рассчитывать только на основе прошлых данных, используя тренировочное окно для выбора стратегии очистки, а затем применяя её к тестовому окну без перерасчёта с использованием будущих данных.

⚠️ Подводный камень

Некоторые методы очистки могут неявно использовать будущие данные. Например, если для заполнения пропусков используется медиана по всему набору данных, можно случайно использовать данные из будущего. Это приводит к утечке данных.

Правильный подход — использовать историческую информацию для очистки и создания признаков, строго следуя причинной логике.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/927
Create:
Last Update:

Как обеспечить последовательность очистки данных для временных рядов в обучающем и тестовом наборах данных с учётом разных временных окон

Для временных рядов тестовый набор обычно относится к более позднему временному окну, чем обучающий. Если распределение временного ряда изменяется, важно, чтобы шаги очистки (например, заполнение пропусков) и создание признаков (например, скользящие средние) не использовали данные из будущего.

Преобразования (например, скользящее среднее) следует рассчитывать только на основе прошлых данных, используя тренировочное окно для выбора стратегии очистки, а затем применяя её к тестовому окну без перерасчёта с использованием будущих данных.

⚠️ Подводный камень

Некоторые методы очистки могут неявно использовать будущие данные. Например, если для заполнения пропусков используется медиана по всему набору данных, можно случайно использовать данные из будущего. Это приводит к утечке данных.

Правильный подход — использовать историческую информацию для очистки и создания признаков, строго следуя причинной логике.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/927

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA